金沙娱乐

打了乙型病毒性肝性疫苗能马上怀孕吗,孕早期产后出血这几个事儿能够预测了

五月 3rd, 2019  |  金沙娱乐

在医治确认的怀孕中,有15%会生出早产\[1\]。在这一个早产的案例中,有超常4/8与母婴免疫性耐受功效缺陷有关\[2\]

1.Oral insulin composite microcapsules and manufacturing method thereof
(by machine translation). CN104739806, 2018.

有音信呈现,近期辽宁省立中学医院违法操作引发HIV毒感染的风云中,受害者可能是因习贯性宫外孕而在该院接受免疫医治。

原标题:打了乙型病毒性肝性疫苗能立刻怀孕吗?

母亲和婴儿免疫性耐受效能缺陷”是何等?能导致那样高比例的早产!?有如何应对的形式呢?不久前,来自武大高校文高校的杜美蓉团队,在《科学·随机信号》(Science
Signaling)杂志上刊出了一篇探究文章,揭破了1种免疫性蛋白表明和早先时代新生儿窒息之间的关系\[3\]

2.A oral insulin nano-composite and its preparation method (by machine
translation). CN108236720, 2018.

子宫破裂对于满心期待着孕育新生命的老母来说是悲痛欲绝的,还会伴随着焦虑和慌张。而这么些感受,会趁着产后出血次数加多而持续追加。经历流产的母亲们恐怕会四处求医,会大量查看音信,当见到某种治疗方案后,或者会感到“不管有未有用,不管贵不贵,只要能试的就都尝试,求个思想抚慰也好,万一有机能呢?”

世卫组织也曾指出[6]:“孕妇和哺乳期才女不是接种乙肝疫苗的避讳症。”因而,怀孕时期也可以接种乙型病毒性肝性疫苗。

金沙娱乐 1“母亲和婴儿免疫性耐受功能缺陷”

3.Traditional Chinese medicine formula for improving insulin resistance.
CN107812134, 2018.

金沙娱乐 ,有了那种情绪的指点,人们很难保障本身不会去相信一些美好的弥天津高校谎。其实,试1试的情怀不仅仅没错,而且丰硕能够驾驭。可是,在试的长河,
须要小心接纳有意义的反省和诊治,而不是病急乱投医,因为那样的尝尝,带来的也许不是梦想,而是损害。

曾有两项妊娠时期接种乙型病毒性肝性疫苗的钻研,结果注明接种二剂乙型病毒性肝性疫苗后,八四%的产妇发生抗体,53%的小儿降生后检查评定到抗HBs[1];接种叁剂乙型病毒性肝性疫苗的产妇可产生更加高的抗HBs,新生儿从母体得到的抗原也越来越多[2]。妊娠中、晚期接种乙肝疫苗是高枕无忧的,未有察觉对怀孕女子和胎儿的不利影响。妊娠早期接种乙型病毒性肝性疫苗的通信较少[3,
4],目前不曾察觉乙型病毒性肝性疫苗对孕妇产妇妇或胎儿发生强烈的不良影响[打了乙型病毒性肝性疫苗能马上怀孕吗,孕早期产后出血这几个事儿能够预测了。4]。美利哥医师建议乙型病毒性肝性表面抗体、表面抗体及骨干抗体均中性(neuter gender)的妊娠女人应该接种乙肝疫苗[5]。

小儿的基因,有一半来自老母,另一半来自阿爸。换句话说,对阿妈的肉体来讲,胎儿的11分之5基因是不属于本人的异源基因。所以每二遍顺遂的怀孕,差不离能够视作是二遍得逞的异源移植。

4.A oral insulin nano particle and its preparation method (by machine
translation). CN108371708, 2018.

金沙娱乐 2新生儿窒息是悲痛欲绝的,数次落空更令人认为难以承受,但此时,更需伴侣互相提携,对检查和医治维持理性。图片来自:1二叁rf.com.cn正版图片库

小编国曾有乙型病毒性肝性疫苗致怀孕早期新生儿窒息的简报[7]。由此,小编国为了妊娠妇女和胚胎的平安,一般不建议妊娠时期接种乙型病毒性肝性疫苗。提议在婚前肉体检查时进行乙型病毒性肝性5项检测,若HBsAg和抗HBs均为中性(neuter gender),越发是男人配偶为乙型病毒性肝性传播疾病毒感染者时,育龄女性最棒在孕前接种乙型病毒性肝性疫苗。如果乙型病毒性肝性传播疾病毒感染者的内人在未接种乙型病毒性肝性疫苗的状态下已经怀胎,且抗HBs中性(neuter gender),也不必补行接种疫苗,但要在孕期避免性生活,孩子出生后立时接种乙型病毒性肝性疫苗,爱妻可在产后补行接种乙型病毒性肝性疫苗。但若在接种乙型病毒性肝性疫苗时竟然有喜,也不要求甘休妊娠,能够继续妊娠[8]。因为到方今停止,除了有一例早产的通信外,还不曾乙型病毒性肝性疫苗导致胎儿发育极度的电视发表。

既然是外来“侵略”的,自然就便于受到自己免疫性系统的口诛笔伐和排斥。所以在怀孕的进度个中,老母的肌体急需开始展览复杂的调整来获得免疫耐受,维持妊娠的例行开始展览。这中间只要母亲和婴儿之间的免疫性耐受受到干扰,就能够冒出丰富多彩的怀孕并发症——自然宫外孕是内部最常见的一种。

5.A oral insulin […] grain and its preparation method (by machine
translation). CN108478785, 2018.

单次的本来新生儿窒息,没有要求排查原因和看病

孕20周在此之前(也有国家定义为孕24周此前)怀孕铩羽都号称自然胎盘早剥。大致一伍%~2伍%业已认可成功的怀孕,会以本来产后虚脱为结局。个中,大概有四分三~百分之八十的本来胎位十分爆发在前1二孕周。

本来胎盘早剥的原由日常是无力回天肯定的。根据临床计算,约二分一当然早产的因由是开始本人的品质难题,比如染色体卓殊。大多数情景下,那些染色体万分的发生只是可能率事件,而不是因为备孕夫妻互相有遗传性的染色体非常。

当自然子宫破裂产生时,目前今世历史学还不曾章程能够阻挡。所以本来胎位非凡的诊治,主若是防止出血和感染,同时也要尽最大的用力给予病人心思和生理上的照管。

就算如此自然产后虚脱的经历十一分令人难熬,可是单次的自然新生儿窒息许多是可能率事件,无需进行科学普及的排查,也无需种种治疗。科学的应对态度是不择手腕关照好温馨,调度好心思,为下一遍怀孕做好希图。

金沙娱乐 3图形来源:12三rf.com.cn正版图影片仓库

金沙娱乐 4

一经爆发过自然产后出血,此后习于旧贯性胎位相当的高危害也会增加,而且依靠现成的反省技能(无论是hCG、孕酮还是B型超声检查判断)很难分明病因,所以医务职员也难以展开前瞻或干预\[4\]。所以,搞领会母亲和婴儿免疫性耐受作用缺陷的原故,从源头调整恐怕出现的高风险就成了地工学家们努力研商的课题。

6.AboulFotouh, K.; Allam, A. A.; El-Badry, M.; El-Sayed, A. M., Role of
self-emulsifying drug delivery systems in optimizing the oral delivery
of hydrophilic macromolecules and reducing interindividual variability.
Colloids and Surfaces B: Biointerfaces 2018, 167, 82 – 92.

习贯性产后出血:已知的来头和尚待确认的来头

习于旧贯性宫外孕平日定义为连日来三遍依然贰遍以上在孕早期发生自然产后虚脱。习于旧贯性早产的发生概率差不多在1%~二%。

以致习贯性新生儿窒息的已知原因不外乎:抗磷脂综合征
(APS)、遗传性血栓变成援救、染色体相当和子宫颈机能不全(孕中期产后出血)。

别的,还有一些原因,近日感觉有一点都不小可能率引致习于旧贯性胎盘早剥,可是还未曾完全认可,包涵子宫形态万分、感染、无客观医治的糖尿病和甲状腺功效十三分、多囊卵巢综合征等等。

那就是说对于习贯性格宫破裂,到底怎么着检查和医疗无需做或然不应该做,哪些检查和医治能够设想吧?

References

在母体免疫性系统的三种机制讨论中,自然杀伤细胞引起了人人的令人瞩目。那是1种先个性免疫淋巴细胞,有惊人的效能分裂性,在怀孕进程中存有三种调解作用。比如在妊娠时,子宫里蜕膜组织中的自然杀伤细胞含量就能精晓增加。而蜕膜协会,对怀孕的创立和保持至关心器重要\[5-8\]

7.Achenbach, Asymptomatic early stage type?1 diabetes: Oral insulin as
a?preventive treatment. Diabetologe 2018, 14 , 234 – 239.

免疫性医疗——请不容

山东省立中学医院的浸染事件,被疑与淋巴细胞免疫医治有关,这种治疗涉及封闭抗体格检查查。粤语互连网中关于那种检讨和诊治的描述粗粗是:平常孕妇的血清中存在一种抗体,能够阻挡老母的免疫性系统攻击胚胎,假使贫乏那种抗体就能够促成早产;免疫性疗法则是透过将娃他爹淋巴细胞输入内人体内,使抗体变为中性(neuter gender)。

读起来倍感很“高精尖”,然而对于它在“防治”习贯性子宫破裂中的作用,循证经济学却付出了以下结论\[1-8\]

1.免疫应答分外导致习于旧贯性新生儿窒息的演绎,并从未被优质证据表达。
二.免疫性医治并从未被证实一蹴而就,并不会扶助升高成功分身的几率。
叁.免疫性医疗有生死攸关的例行危害,在那之中囊括输血反应、过敏性休克、感染肝炎。而山西省立中学医院的事件1旦真与该医治相关,那么这么些严重的正规风险,还相应加上呼吸系统感染染HIV病毒。
4.习贯性流产女子不应当接受卫戍可能更改人体免疫性应答的医治(免疫性医疗)。

对那种医治的循证艺术学证据,世卫组织级军官网引用的文献结论为:父系细胞免疫性、第壹方供体白细胞免疫性、滋养层膜输注免疫性和静脉注射免疫性球蛋白,在加强活产率上与安慰剂相比未有显然的利润\[1,9\]

所以,如果不幸经历了习贯性新生儿窒息,当有医务卫生人士提议您做封闭抗体格检查查以及接下来恐怕的免疫性医疗,请安心拒绝。您并不会因为拒绝那一个检查和看病而错过一些或然的受益,相反,您能够免止不要求的常规危害,也幸免不供给的花费。

金沙娱乐 5请拒绝针对习于旧贯性早产的免疫性治疗。图片源于:1贰三rf.com.cn正版图片库

[1] Ayoola EA, Johnson AO. Hepatitis B vaccine in pregnancy:
immunogenicity, safety and transfer of antibodies to infants. Int J
Gynaecol Obstet. 1987. 25(4): 297-301.

南开高校的研商就开掘,自然杀伤细胞中的Tim-3蛋白对早期妊娠有机密的保险成效!

8.Alfatama, M.; Lim, L. Y.; Wong, T. W., Alginate-C18 Conjugate
Nanoparticles Loaded in Tripolyphosphate-Cross-Linked Chitosan-Oleic
Acid Conjugate-Coated Calcium Alginate Beads as Oral Insulin Carrier.
Molecular Pharmaceutics 2018, 15 , 3369 – 3382.

额外补充安宫黄酮或hCG(人绒毛膜促性腺激素)——没有必要做

有的经验习贯性早产的女性,恐怕会被推荐尝试额外补充安宫黄酮恐怕人绒毛膜促性腺激素。但是,当前循证证据声明,额外补充醋酸甲羟孕酮或然人绒毛膜促性腺激素并不会赞助防范胎盘早剥或许降低宫外孕可能率,由此那也不推荐作为防治产后虚脱只怕习于旧贯性产后出血的办法。

急需提示的是,现有的循证证据也并不曾察觉孕期补偿安宫黄酮对母亲和珍宝有不行的平常影响。由此,假设有别的原因要求在孕期应用安宫黄酮,可以遵医嘱使用。

[2] Gupta I, Ratho RK. Immunogenicity and safety of two schedules of
Hepatitis B vaccination during pregnancy. J Obstet Gynaecol Res. 2003.
29(2): 84-6.

Tim-三的全名是“T细胞免疫性球蛋白及黏蛋白域蛋白-三”。Tim-3有一个配体叫Gal-9。那些名字不主要,主要的是,Gal-9-Tim-三实信号通路有第3的免疫性调度功能,能够有助于免疫性耐受\[9-11\]。在事先的钻研中,人们就知道,Tim-3能够压制异源移植的排异,提升异源皮肤移植的成活率\[12\]。那么,Tim-3在最初妊娠中有用吗?

9.Anirudhan, T. S.; Parvathy, J., Novel Thiolated
Chitosan-Polyethyleneglycol blend/Montmorillonite composite formulations
for the oral delivery of insulin. Bioactive Carbohydrates and Dietary
Fibre 2018, 16, 22 – 29.

抗磷脂综合征 (APS)排查和医疗——能够设想

经历一遍照旧一遍以上的胎盘早剥今后,需求通过血液学检查测定抗磷脂抗体(首要的七个目的是狼疮抗凝物和抗心磷脂抗体)。如果一回间隔六~12周的反省都提醒当中三个目标呈中性(neuter gender),那么能够检查判断抗磷脂综合征。

习贯性胎位分外的女子若是确诊为抗磷脂综合征,能够经过低剂量的阿司匹林和肝素进行医疗,从而巩固成功分娩婴儿的可能率。

[3] Levy M, Koren G. Hepatitis B vaccine in pregnancy: maternal and
fetal safety. Am J Perinatol. 1991. 8(3): 227-32.

那正是复旦的钻研以来证实的职业。杜美蓉和同事们商讨了正规妊娠女子的血液、产生早期妊娠习贯性宫外孕女人的血流,还成立了怀孕及新生儿窒息的小鼠模型。他们发觉:

10.Babbar, R.; Heni, M.; Peter, A.; de Angelis, M. H.; H?ring, H.-U.;
Fritsche, A.; Preissl, H.; Sch?lkopf, B.; Wagner, R. b., Prediction of
glucose tolerance without an oral glucose tolerance test. Frontiers in
Endocrinology 2018, 9 .

产后出血胚胎染色体格检查查——能够设想

标准许可的前提下,对宫外孕的序曲能够实行染色体格检查查。假诺发现染色体万分,那么一般提醒该次胎位相当是3回可能率事件。不过,假若在染色体格检查查进程中发觉“不平衡易位”(unbalanced
translocation),那么评释夫妻双方中的1方大概有“平衡易位”的染色体卓殊,需求通过血液检查来一发排查。假诺确认了1方有平衡易位,
今世文学还未有医疗的格局,须求开始展览遗传门诊专科咨询,个体化思量其余有效的大肚子分娩的火候。

[4] Sheffield JS, Hickman A, Tang J, et al. Efficacy of an accelerated
hepatitis B vaccination program during pregnancy. Obstet Gynecol. 2011.
117(5): 1130-5.

对此习于旧贯性新生儿窒息的伤者来讲,自然杀伤细胞表面包车型地铁Tim-三表明具有压缩,所以血液中十分受Tim-3能量信号激情的当然杀伤细胞发生的抗炎细胞激酶也较少。简单说,就是免疫性系统受到了抑制,变温和了,不那么爱打了

11.Banerjee, A.; Ibsen, K.; Brown, T.; Chen, R.; Agatemor, C.;
Mitragotri, S., Ionic liquids for oral insulin delivery. Proceedings of
the National Academy of Sciences of the United States of America 2018,
115 , 7296 – 7301.

子宫形态排查和答复——大概能够思考

子宫形态首要通过超声检查来考查,假设超声检查提醒子宫形态万分,就恐怕要求通过宫腔镜、腹腔镜或然盆腔3D超声来特别排查。部分子宫形态格外,能够透过手术修正,不过当前还从未丰裕的证据申明这几个手术能够扶持升高成功分身的时机。因而,是不是开始展览手术以及手术的章程方法,都急需主诊医师的个体化评估和决断。

[5] Tran TT. Management of hepatitis B in pregnancy: weighing the
options. Cleve Clin J Med. 2009. 76 Suppl 3: S25-9.

对于早先时期难产或着自然杀伤细胞成效有欠缺的小鼠,移植受到Tim-3功率信号激情的本来杀伤细胞,就能够减小它们的宫外孕率,而移植未有被Tim-叁能量信号激情的当然杀伤细胞就从未有过遵循。

12.Barbari, G. R.; Dorkoosh, F.; Amini, M.; Javan, N. B.; Sharifzadeh,
M.; Atyabi, F.; Balalaie, S.; Tehrani, N. R.; Tehrani, M. R., Synthesis
and characterization of a novel peptide-grafted cs and evaluation of its
nanoparticles for the oral delivery of insulin, in vitro, and in vivo
study. International Journal of Nanomedicine 2018, 13, 5127 – 5138.

遗传性血栓产生支持的回答——孕中期产后出血能够设想

孕早先时期子宫破裂者,或然会被提出开始展览局地遗传相关的凝血因子卓殊排查。假诺那几个检查开采了相关的不得了,那么恐怕医师会提出在下3回怀孕的时候使用肝素诊疗。然而,对于孕早期的习于旧贯性难产,那种医疗的有效还尚无被验证。

[6] WHO. Hepatitis B vaccines: WHO position paper. Weekly
Epidemiological Record. 2009. 40: 405-420.

数据申明,恐怕,医务人士们能够检查实验孕妇血液受到提姆-三数字信号激情的自然杀伤细胞,并以此作为三个可信的目标,预测习贯性难产是还是不是会时有爆发等景色。(编辑:明天)

13.Bhattacharyya, A.; Nasim, F.; Mishra, R.; Bharti, R. P.; Kundu,
Polyurethane-incorporated chitosan/alginate core?shell nano-particles
for controlled oral insulin delivery. Journal of Applied Polymer Science
2018, 135 .

当仁不让随同访问和应对宫颈机能不全——部分孕后期胎位至极只怕能够设想

现阶段,在非孕期,还不曾保证的措施可以检查判断子宫机能不全。所以,若是医务职员嫌疑上3次的孕中期胎盘早剥恐怕与子宫机能不全相关的话,大概会在下三遍怀孕的时候举行技艺极其精巧的超声随同访问,医务人士也可能会基于个体化评估结果建议是不是开始展览宫颈环扎。可是,近来还未曾显然的凭证注解宫颈环扎手术得以扶持降低孕早先时期产后出血的危害。

[7] 徐莉洁,赵明玉. 乙型肝癌疫苗致早期妊娠羊水栓塞四例. 今世妇血液科进展.

参考文献:

  1. B. Christiansen, R. Steffensen, H. S. Nielsen, K. Varming,
    Multifactorial etiology of recurrent miscarriage and its scientific
    and clinical implications. Gynecol. Obstet. Invest. 66, 257–267
    (2008).
  2. E. C. Larsen, O. B. Christiansen, A. M. Kolte, N. Macklon, New
    insights into mechanisms behind miscarriage. BMC Med. 11, 154
    (2013).
  3. Li Y, Zhang J, Zhang D, et al. Tim-3 signaling in peripheral NK
    cells promotes maternal-fetal immune tolerance and alleviates
    pregnancy loss. Sci Signal. 2017;10(498)
  4. S. Seshadri, S. K. Sunkara, Natural killer cells in female
    infertility and recurrent miscarriage: A systematic review and
    meta-analysis. Hum. Reprod. Update 20, 429–438 (2014).
  5. C. Carlino, H. Stabile, S. Morrone, R. Bulla, A. Soriani, C.
    Agostinis, F. Bossi, C. Mocci,
  6. F. Sarazani, F. Tedesco, A. Santoni, A. Gismondi, Recruitment of
    circulating NK cells through decidual tissues: A possible mechanism
    controlling NK cell accumulation in the uterus during early
    pregnancy. Blood 111, 3108–3115 (2008).
  7. J. Kieckbusch, L. M. Gaynor, A. Moffett, F. Colucci, MHC-dependent
    inhibition of uterine NK cells impedes fetal growth and decidual
    vascular remodelling. Nat. Commun. 5, 3359 (2014).
  8. P. Vacca, M. C. Mingari, L. Moretta, Natural killer cells in human
    pregnancy. J. Reprod. Immunol. 97, 14–19 (2013).
  9. T. Flecken, P. Sarobe, Tim-3 expression in tumour-associated
    macrophages: A new player in HCC progression. Gut 64, 1502–1503
    (2015).
  10. S. Koyama, E. A. Akbay, Y. Y. Li, G. S. Herter-Sprie, K. A.
    Buczkowski, W. G. Richards, L. Gandhi, A. J. Redig, S. J. Rodig, H.
    Asahina, R. E. Jones, M. M. Kulkarni, M. Kuraguchi, S.
    Palakurthi, P. E. Fecci, B. E. Johnson, P. A. Janne, J. A.
    Engelman, S. P. Gangadharan, D. B. Costa, G. J. Freeman, R.
    Bueno, F. S. Hodi, G. Dranoff, K.-K. Wong, P. S. Hammerman, Adaptive
    resistance to therapeutic PD-1 blockade is associated with
    upregulation of alternative immune checkpoints. Nat. Commun. 7,
    10501 (2016).
  11. B. L. Phong, L. Avery, T. L. Sumpter, J. V. Gorman, S. C.
    Watkins, J. D. Colgan, L. P. Kane, Tim-3 enhances FceRI-proximal
    signaling to modulate mast cell activation. J. Exp. Med. 212,
    2289–2304 (2015).
  12. F. Wang, W. He, J. Yuan, K. Wu, H. Zhou, W. Zhang, Z. K. Chen,
    Activation of Tim-3Galectin-9 pathway improves survival of fully
    allogeneic skin grafts. Transpl. Immunol. 19, 12–19 (2008).

14.Chen, C. C.; Baikoghli, M. A.; Cheng, R. H., Tissue targeted
nanocapsids for oral insulin delivery via drink. Pharmaceutical Patent
Analyst 2018, 7 , 121 – 127.

当排查之后依旧找不出原因的时候

对习贯性产后出血的来头积极排查后,其实依旧有四分之二之上是力不从心料定原因的,那应当是最令人不平静谐和焦虑的。不过,排查常见原因之后并没有意识任何尤其的习于旧贯性产后出血者,固然在下二次受孕后快捷在孕早期就从头主动的孕期随同访问和健康处理,那么有5分之3的机遇能够成功分身\[1,10-11\]。然则,那些成功分身的比重会趁着女人年龄扩张和来往产后虚脱次数的扩充而下落。

金沙娱乐 6经历了2回不幸的泡汤事件后,扎克Berg夫妇终于有所了三个常规的小婴孩。图片来自:cnn.com

最终,肝素和阿司匹林对一些鲜明原因的习于旧贯性产后出血有治病意义,不过,今后并从未证据注明它们对原因不明的习贯性宫外孕有回落新生儿窒息危害的功力,所以肝素和阿司匹林并不是原因未明时的集合常规治疗选择。

期待以上分享,能够给有必要的人带去一些有含义的新闻,避开不供给的临床和检讨,尤其理性地对待胎位非常和习于旧贯性宫外孕,制止不要求的损害。(编辑:odette)

  1. 5(4): 356.

15.Chen, J.; Liu, R.; Liu, C.; Jin, X.; Zhang, Q.; Wang, J.; Zhao, F.;
Wang, Z.; Qiu, H.; Li, Y.; Yi, X., Progress of oral insulin and related
drug delivery systems and their pharmacokinetics. Current Drug
Metabolism 2018, 19 , 863 – 870.

参考文献:

  1. The Investigation and Treatment of Couples with Recurrent First
    trimester and Second-trimester Miscarriage; Royal College of
    Obstetricians and Gynaecologists. Available online at
     
  2. Bombell S, McGuire W.Cytokine polymorphisms in women with recurrent
    pregnancy loss: meta-analysis.Aust N Z J Obstet Gynaecol
    2008;48:147–54.
  3. Wong LF, Porter TF, Scott JR. Immunotherapy for recurrent
    miscarriage. Cochrane Database of Systematic Reviews 2014, Issue 10.
    Art. No.: CD000112. DOI: 10.1002/14651858.CD000112.pub3.
  4. Hutton, B., Sharma, R., Fergusson, D., Tinmouth, A., Hebert, P.,
    Jamieson, J. and Walker, M. (2007), Use of intravenous
    immunoglobulin for treatment of recurrent miscarriage: a systematic
    review. BJOG: An International Journal of Obstetrics & Gynaecology,
    114: 134–142. doi:10.1111/j.1471-0528.2006.01201.
  5. Coulam CB, Krysa L, Stern JJ, Bustillo M. Intravenous immunoglobulin
    for treatment of recurrent pregnancy loss. Am J Reprod Immunol
    1995;34:333–7. 85. 
  6. Christiansen OB, Mathiesen O, Husth M, Rasmussen KL, Ingerslev HJ,
    Lauritsen JG, Grunnet N. Placebo-controlled trial of treatment of
    unexplained secondary recurrent spontaneous abortions and recurrent
    late spontaneous abortions with i.v. immunoglobulin. Hum Reprod
    1995;10:2690–5. 86. 
  7. Stephenson MD, Dreher K, Houlihan E, Wu V. Prevention of unexplained
    recurrent spontaneous abortion using intravenous immunoglobulin: a
    prospective, randomized, double-blinded, placebo-controlled trial.
    Am J Reprod Immunol 1998;39:82–8.
  8. Ata B, Tan SL, Shehata F, Holzer H, Buckett W. A systematic review
    of intravenous immunoglobulin for treatment of unexplained recurrent
    miscarriage. Fertil Steril 2011;95:1080–5
  9. Clifford K,Rai R,Regan L. Future pregnancy outcome in unexplained
    recurrent first trimester miscarriage.Hum Reprod 1997;12:387–9
  10. Brigham SA,Conlon C, Farquharson RG. A longitudinal study of
    pregnancy outcome following idiopathic recurrent miscarriage.Hum
    Reprod 1999;14:2868–71.

[8] 中华农学会妇内科学分会外科学组.
乙型胆囊癌病毒母亲和婴儿传播防范医疗指南(第3版). 中华妇内科杂志. 20一3. 48(二):
151-154.回到腾讯网,查看更加多

16.Chen, Y.; Li, P.; Modica, J. A.; Drout, R. J.; Farha, O. K.,
Acid-Resistant Mesoporous Metal-Organic Framework toward Oral Insulin
Delivery: Protein Encapsulation, Protection, and Release. Journal of the
American Chemical Society 2018, 140 , 5678 – 5681.

责编:

17.Chen, Y.-S.; Zaro, J. L.; Zhang, D.; Huang, N.; Simon, A.; Shen,
W.-C., Characterization and oral delivery of proinsulin-transferrin
fusion protein expressed using expresstec. International Journal of
Molecular Sciences 2018, 19 .

18.Cikrikci, S.; Mert, B.; Oztop, M. H., Development of pH Sensitive
Alginate/Gum Tragacanth Based Hydrogels for Oral Insulin Delivery.
Journal of Agricultural and Food Chemistry 2018, 66 , 11784 – 11796.

19.Czuba, E.; Diop, M.; Mura, C.; Schaschkow, A.; Langlois, A.;
Bietiger, W.; Neidl, R.; Virciglio, A. l.; Auberval, N.; Julien-David,
D.; Maillard, E.; Frere, Y.; Marchioni, E.; Pinget, M.; Sigrist, S. v.,
Oral insulin delivery, the challenge to increase insulin
bioavailability: Influence of surface charge in nanoparticle system.
International Journal of Pharmaceutics 2018, 542 , 47 – 55.

20.Danne, T.; Heinemann, L.; Bolinder, J., New Insulins, Biosimilars,
and Insulin Therapy. Diabetes Technology and Therapeutics 2018, 20 , S55

  • S70.

21.Dellepiane, S.; Ben Nasr, M.; Assi, E.; Usuelli, V.; Letizia, T.;
D’Addio, F.; Zuccotti, G. V.; Fiorina, P., Sodium glucose cotransporters
inhibitors in type 1 diabetes. Pharmacological Research 2018, 133, 1 –
8.

22.Dumont, C.; Bourgeois, S.; Fessi, H.; Jannin, V., Lipid-based
nanosuspensions for oral delivery of peptides, a critical review.
International Journal of Pharmaceutics 2018, 541 , 117 – 135.

23.Easa, N.; Alany, R. G.; Carew, M.; Vangala, A., A review of
non-invasive insulin delivery systems for diabetes therapy in clinical
trials over the past decade. Drug Discovery Today 2018.

24.Eilleia, S. Y.; Soliman, M. E.; Mansour, S.; S. Geneidi, A., Novel
technique of insulin loading into porous carriers for oral delivery.
Asian Journal of Pharmaceutical Sciences 2018, 13 , 297 – 309.

25.Eilleia, S. Y.; Soliman, M. E.; Niedermayer, S.; Schmidt, A.;
Mansour, S.; Geneidi, A. S., Examining insulin adsorption onto
mesoporous silica microparticles for oral delivery. Current Drug
Delivery 2018, 15 , 541 – 553.

26.Fan, W.; Xia, D.; Zhu, Q.; Li, X.; He, S.; Zhu, C.; Guo, S.;
Hovgaard, L.; Yang, M.; Gan, Y., Functional nanoparticles exploit the
bile acid pathway to overcome multiple barriers of the intestinal
epithelium for oral insulin delivery. Biomaterials 2018, 151, 13 – 23.

27.Fuadah, N. R.; Hertadi, R., In Silico Study of Phospholipids as An
Oral Insulin Delivery System. Journal of Physics: Conference Series
2018, 1090 .

28.Fukuoka, Y.; Khafagy, E.-S.; Goto, T.; Kamei, N.; Takayama, K.;
Peppas, N. A.; Takeda-Morishita, M., Combination strategy with
complexation hydrogels and cell-penetrating peptides for oral delivery
of insulin. Biological and Pharmaceutical Bulletin 2018, 41 , 811 – 814.

29.Gabbai, F. B., The role of renal response to amino acid infusion and
oral protein load in normal kidneys and kidney with acute and chronic
disease. Current Opinion in Nephrology and Hypertension 2018, 27 , 23 –
29.

30.Gedawy, A.; Martinez, J.; Al-Salami, H.; Dass, C. R., Oral insulin
delivery: existing barriers and current counter-strategies. Journal of
Pharmacy and Pharmacology 2018, 70 , 197 – 213.

31.Harris, K.; Boland, C.; Meade, L.; Battise, D., Adjunctive therapy
for glucose control in patients with type 1 diabetes. Diabetes,
Metabolic Syndrome and Obesity: Targets and Therapy 2018, 11, 159 – 173.

32.He, H.; Lu, Y.; Qi, J.; Zhao, W.; Dong, X.; Wu, W., Biomimetic
thiamine- and niacin-decorated liposomes for enhanced oral delivery of
insulin. Acta Pharmaceutica Sinica B 2018, 8 , 97 – 105.

33.He, Z.; Liu, Z.; Tian, H.; Hu, Y.; Liu, L.; Leong, K. W.; Mao, H.-Q.;
Chen, Y., Scalable production of core-shell nanoparticles by flash
nanocomplexation to enhance mucosal transport for oral delivery of
insulin. Nanoscale 2018, 10 , 3307 – 3319.

34.Hu, Q.; Luo, Y., Recent advances of polysaccharide-based
nanoparticles for oral insulin delivery. International Journal of
Biological Macromolecules 2018, 120, 775 – 782.

35.Ibie; Knott; Thompson, Complexation of novel thiomers and insulin to
protect against in vitro enzymatic degradation?towards oral insulin
delivery. Drug Development and Industrial Pharmacy 2018.

36.Ismail, H. M.; Xu, P.; Libman, I. M.; Becker, D. J.; Marks, J. B.;
Skyler, J. S.; Palmer, J. P.; Sosenko, J. M., The shape of the glucose
concentration curve during an oral glucose tolerance test predicts risk
for type 1 diabetes. Diabetologia 2018, 61 , 84 – 92.

37.Jafary Omid, N.; Bahari Javan, N.; Dehpour, A.-R.; Partoazar, A.;
Rafiee Tehrani, M.; Dorkoosh, F., In-vitro and in-vivo cytotoxicity and
efficacy evaluation of novel glycyl-glycine and alanyl-alanine
conjugates of chitosan and trimethyl chitosan nano-particles as carriers
for oral insulin delivery. International Journal of Pharmaceutics 2018,
535 , 293 – 307.

38.Jung, S.-H.; Jung, C.-H.; Reaven, G. M.; Kim, S. H., Adapting to
insulin resistance in obesity: role of insulin secretion and clearance.
Diabetologia 2018, 61 , 681 – 687.

39.Kamei, N.; Shigei, C.; Hasegawa, R.; Takeda-Morishita, M.,
Exploration of the key factors for optimizing the in vivo oral delivery
of insulin by using a noncovalent strategy with cell-penetrating
peptides. Biological and Pharmaceutical Bulletin 2018, 41 , 239 – 246.

40.Kassem, M.; Ali, A.; El-badrawy, A., Formulation, characterization
and in-vivo application of oral insulin nanotechnology using different
biodegradable polymers: Advanced drug delivery system. International
Journal of Pharmaceutical Sciences and Research 2018, 9 , 3664 – 3677.

41.Kermanizadeh, A.; Powell, L. G.; Stone, V.; M?ller, P., Nanodelivery
systems and stabilized solid-drug nanoparticles for orally administered
medicine: Current landscape. International Journal of Nanomedicine 2018,
13, 7575 – 7605.

42.Kesharwani, P.; Gorain, B.; Low, S. Y.; Tan, S. A.; Ling, E. C. S.;
Lim, Y. K.; Chin, C. M.; Lee, P. Y.; Lee, C. M.; Ooi, C. H.; Choudhury,
H.; Pandey, M., Nanotechnology based approaches for anti-diabetic drugs
delivery. Diabetes Research and Clinical Practice 2018, 136, 52 – 77.

43.Kihl, P.; Krych, L.; Buschard, K.; Wesley, J. D.; Kot, W.; Hansen, A.
K.; Nielsen, D. S.; von Herrath, M. G., Oral insulin does not alter gut
microbiota composition of NOD mice. Diabetes/Metabolism Research and
Reviews 2018, 34 .

44.Kou, L.; Bhutia, Y. D.; Yao, Q.; He, Z.; Sun, J.; Ganapathy, V.,
Transporter-guided delivery of nanoparticles to improve drug permeation
across cellular barriers and drug exposure to selective cell types.
Frontiers in Pharmacology 2018, 9 .

45.Kumar, V.; Choudhry, I.; Namdev, A.; Mishra, S.; Soni, S.; Hurkat,
P.; Jain, A.; Jain, D., Oral insulin: Myth or reality. Current Diabetes
Reviews 2018, 14 , 497 – 508.

46.Lamb, Y. N.; Syed, Y. Y., LY2963016 Insulin Glargine: A Review in
Type 1 and 2 Diabetes. BioDrugs 2018, 32 , 91 – 98.

47.Li, C.; Huang, F.; Liu, Y.; Lv, J.; Wu, G.; Liu, Y.; Ma, R.; An, Y.;
Shi, L., Nitrilotriacetic Acid-Functionalized Glucose-Responsive Complex
Micelles for the Efficient Encapsulation and Self-Regulated Release of
Insulin. Langmuir 2018, 34 , 12116-12125.

48.Li, P.; Hao, J.; Li, H.; Guan, H.; Li, C., Development of an enteric
nanoparticle of marine sulfated polysaccharide propylene glycol alginate
sodium sulfate for oral administration: formulation design,
pharmacokinetics and efficacy. Journal of Pharmacy and Pharmacology
2018, 70 , 740 – 748.

49.Lin, P.-Y.; Chiu, Y.-L.; Huang, J.-H.; Chuang, E.-Y.; Mi, F.-L.; Lin,
K.-J.; Juang, J.-H.; Sung, H.-W.; Leong, K. W., Oral Nonviral Gene
Delivery for Chronic Protein Replacement Therapy. Advanced Science 2018,
5 .

50.Liu, L.; Zhang, Y.; Yu, S.; Yang, Z.; He, C.; Chen, X., Dual
Stimuli-Responsive Nanoparticle-Incorporated Hydrogels as an Oral
Insulin Carrier for Intestine-Targeted Delivery and Enhanced
Paracellular Permeation. ACS Biomaterials Science and Engineering 2018,
4 , 2889 – 2902.

51.Liu, L.; Zhang, Y.; Yu, S.; Zhang, Z.; He, C.; Chen, X., PH- and
Amylase-Responsive Carboxymethyl Starch/Poly(2-isobutyl-acrylic acid)
Hybrid Microgels as Effective Enteric Carriers for Oral Insulin
Delivery. Biomacromolecules 2018, 19 , 2123 – 2136.

52.Liu, M.; Wu, L.; Shan, W.; Cui, Y.; Huang, Y., Iron-mimic peptide
converts transferrin from foe to friend for orally targeting insulin
delivery. Journal of Materials Chemistry B 2018, 6 , 593 – 601.

53.Mahobia, S.; Bajpai, J.; Bajpai, Soya protein as possible potential
nanocarriers for in-vitro oral delivery of insulin in simulated gastric
fluids . International Journal of Polymeric Materials and Polymeric
Biomaterials 2018, 67 , 340 – 350.

54.Marya; Khan, H.; Nabavi, S. M.; Habtemariam, S., Anti-diabetic
potential of peptides: Future prospects as therapeutic agents. Life
Sciences 2018, 193, 153 – 158.

55.McClements, D. J., Encapsulation, protection, and delivery of
bioactive proteins and peptides using nanoparticle and microparticle
systems: A review. Advances in Colloid and Interface Science 2018, 253,
1 – 22.

56.Meneguin, A. i. B.; Beyssac, E.; Garrait, G.; Hsein, H.; Cury, B. S.
F., Retrograded starch/pectin coated gellan gum-microparticles for oral
administration of insulin: A technological platform for protection
against enzymatic degradation and improvement of intestinal
permeability. European Journal of Pharmaceutics and Biopharmaceutics
2018, 123, 84 – 94.

57.Moss, D. M.; Curley, P.; Kinvig, H.; Hoskins, C.; Owen, A., The
biological challenges and pharmacological opportunities of orally
administered nanomedicine delivery. Expert Review of Gastroenterology
and Hepatology 2018, 12 , 223 – 236.

58.Nagy, C. r.; Einwallner, E., Study of in vivo glucose metabolism in
high-fat diet-fed mice using oral glucose tolerance test and insulin
tolerance test . Journal of Visualized Experiments 2018, 2018 .

59.Nielsen, L. H.; Keller, S. S.; Boisen, A., Microfabricated devices
for oral drug delivery. Lab on a Chip 2018, 18 , 2348 – 2358.

60.Nishikawa, T.; Ono, K.; Hashimoto, S.; Kinoshita, H.; Watanabe, T.;
Araki, H.; Otsu, K.; Sakamoto, W.; Harada, M.; Toyonaga, T.; Kawakami,
S.; Fukuda, J.; Haga, Y.; Kukidome, D.; Takahashi, T.; Araki, E.,
One-hour oral glucose tolerance test plasma glucose at gestational
diabetes diagnosis is a common predictor of the need for insulin therapy
in pregnancy and postpartum impaired glucose tolerance. Journal of
Diabetes Investigation 2018, 9 , 1370 – 1377.

61.Niu, Z.; Samaridou, E.; Jaumain, E.; Co?ne, J.; Ullio, G.; Shrestha,
N.; Garcia, J.; Dur?n-Lobato, M.; Tovar, S.; Santander-Ortega, M. J.;
Lozano, M. V.; Arroyo-Jimenez, M. M.; Ramos-Membrive, R. o.; Pe?uelas,
I. n.; Mabondzo, A. s.; Pr?at, V. r.; Teixid, M.; Giralt, E.; Alonso, M.
a. J., PEG-PGA enveloped octaarginine-peptide nanocomplexes: An oral
peptide delivery strategy. Journal of Controlled Release 2018, 276, 125

  • 139.

62.Pandey, M.; Choudhury, H.; Yi, C. X.; Mun, C. W.; Phing, G. K.; Rou,
G. X.; Singh, B. J. K. A. P. A. J.; Jhee, A. N. A.; Chin, L. K.;
Kesharwani, P.; Gorain, B.; Hussain, Z., Recent updates on novel
approaches in insulin drug delivery: A review of challenges and
pharmaceutical implications. Current Drug Targets 2018, 19 , 1782 –
1800.

63.Pareek, M.; Bhatt, D. L.; Nielsen, M. L.; Jagannathan, R.; Eriksson,
K.-F.; Nilsson, P. M.; Bergman, M.; Olsen, M. H., Enhanced predictive
capability of a 1-hour oral glucose tolerance test: A prospective
population-based cohort study. Diabetes Care 2018, 41 , 171 – 177.

64.Qi, X.; Yuan, Y.; Zhang, J.; Bulte, J. W. M.; Dong, W., Oral
Administration of Salecan-Based Hydrogels for Controlled Insulin
Delivery. Journal of Agricultural and Food Chemistry 2018, 66 , 10479 –
10489.

65.Rehmani, S.; Dixon, J. E., Oral delivery of anti-diabetes
therapeutics using cell penetrating and transcytosing peptide
strategies. Peptides 2018, 100, 24 – 35.

66.Rosales-Mendoza, S.; Nieto-G?mez, R., Green Therapeutic Biocapsules:
Using Plant Cells to Orally Deliver Biopharmaceuticals. Trends in
Biotechnology 2018, 36 , 1054 – 1067.

67.Schultz, W. M.; Varghese, T.; Heinl, R. E.; Dhindsa, D. S.; Mahlof,
E. N.; Cai, H. C.; Southmayd, G.; Sandesara, P. B.; Eapen, D. J.;
Sperling, L. S., Natural approaches in diabetes management: A review of
diet, exercise, and natural products. Current Pharmaceutical Design
2018, 24 , 84 – 98.

68.Sgorla, D. b.; Lechanteur, A.; Almeida, A.; Sousa, F. v.; Melo, E.;
Bunhak, l.; Mainardes, R.; Khalil, N.; Cavalcanti, O.; Sarmento, B.,
Development and characterization of lipid-polymeric nanoparticles for
oral insulin delivery. Expert Opinion on Drug Delivery 2018, 15 , 213 –
222.

69.Shamsa, E. S.; Mahjub, R.; Mansoorpour, M.; Rafiee-Tehrani, M.;
Dorkoosh, F. A., Nanoparticles prepared from N,N-Dimethyl-N-Octyl
chitosan as the novel approach for oral delivery of insulin:
Preparation, statistical optimization and in-vitro characterization.
Iranian Journal of Pharmaceutical Research 2018, 17 , 442 – 459.

70.Song, M.; Wang, H.; Chen, K.; Zhang, S.; Yu, L.; Elshazly, E. H.; Ke,
L.; Gong, R., Oral insulin delivery by
carboxymethyl-beta-cyclodextrin-grafted chitosan nanoparticles for
improving diabetic treatment. Artificial Cells, Nanomedicine and
Biotechnology 2018.

71.Sun, Q.; Zhang, Z.; Zhang, R.; Gao, R.; McClements, D. J.,
Development of Functional or Medical Foods for Oral Administration of
Insulin for Diabetes Treatment: Gastroprotective Edible Microgels.
Journal of Agricultural and Food Chemistry 2018, 66 , 4820 – 4826.

72.Tan, X.; Liu, X.; Zhang, Y.; Zhang, H.; Lin, X.; Pu, C.; Gou, J.; He,
H.; Yin, T.; Zhang, Y.; Tang, X., Silica nanoparticles on the oral
delivery of insulin. Expert Opinion on Drug Delivery 2018, 15 , 805 –
820.

73.Thwala, L. N.; Delgado, D. P.; Leone, K.; Marigo, I.; Benetti, F.;
Chenlo, M.; Alvarez, C. V.; Tovar, S.; Dieguez, C.; Csaba, N. S.;
Alonso, M. J., Protamine nanocapsules as carriers for oral peptide
delivery. Journal of Controlled Release 2018, 291, 157 – 168.

74.Tian, H.; He, Z.; Sun, C.; Yang, C.; Zhao, P.; Liu, L.; Leong, K. W.;
Mao, H.-Q.; Liu, Z.; Chen, Y., Uniform Core?Shell Nanoparticles with
Thiolated Hyaluronic Acid Coating to Enhance Oral Delivery of Insulin.
Advanced Healthcare Materials 2018, 7 .

75.Tyagi, P.; Pechenov, S.; Anand, S., Oral peptide delivery:
Translational challenges due to physiological effects. Journal of
Controlled Release 2018, 287, 167 – 176.

76.Villaverde Cendon, F.; Matos Jorge, R. M.; Weinschutz, R.; Mathias,
A. L., Effect of matrix composition, sphere size and hormone
concentration on diffusion coefficient of insulin for controlled
gastrointestinal delivery for diabetes treatment. Journal of
Microencapsulation 2018, 35 , 13 – 25.

77.Wang, A.; Yang, T.; Fan, W.; Yang, Y.; Zhu, Q.; Guo, S.; Zhu, C.;
Yuan, Y.; Zhang, T.; Gan, Y., Protein Corona Liposomes Achieve Efficient
Oral Insulin Delivery by Overcoming Mucus and Epithelial Barriers.
Advanced Healthcare Materials 2018.

78.Wang, X.; Cheng, D.; Liu, L.; Li, X., Development of
poly(hydroxyethyl methacrylate) nanogel for effective oral insulin
delivery. Pharmaceutical Development and Technology 2018, 23 , 351 –
357.

79.Wong, C. Y.; Al-Salami, H.; Dass, C. R., Microparticles,
microcapsules and microspheres: A review of recent developments and
prospects for oral delivery of insulin. International Journal of
Pharmaceutics 2018, 537 , 223 – 244.

80.Wong, C. Y.; Al-Salami, H.; Dass, C. R., Recent advancements in oral
administration of insulin-loaded liposomal drug delivery systems for
diabetes mellitus. International Journal of Pharmaceutics 2018, 549 ,
201 – 217.

81.Wu, J.; Zheng, Y.; Liu, M.; Shan, W.; Zhang, Z.; Huang, Y.,
Biomimetic Viruslike and Charge Reversible Nanoparticles to Sequentially
Overcome Mucus and Epithelial Barriers for Oral Insulin Delivery. ACS
Applied Materials and Interfaces 2018, 10 , 9916 – 9928.

82.Xing, X.; Zhao, X.; Ding, J.; Liu, D.; Qi, G., Enteric-coated insulin
microparticles delivered by lipopeptides of iturin and surfactin. Drug
Delivery 2018, 25 , 23 – 34.

83.Xu, Y.; Zheng, Y.; Wu, L.; Zhu, X.; Zhang, Z.; Huang, Y., Novel Solid
Lipid Nanoparticle with Endosomal Escape Function for Oral Delivery of
Insulin. ACS Applied Materials and Interfaces 2018, 10 , 9315 – 9324.

84.Yu, J.; Zhang, Y.; Wang, J.; Wen, D.; Kahkoska, A. R.; Buse, J. B.;
Gu, Z., Glucose-responsive oral insulin delivery for postprandial
glycemic regulation. Nano Research 2018.

85.Zhang, H.; Wang, W.; Li, H.; Peng, Y.; Zhang, Z., Microspheres for
the oral delivery of insulin: preparation, evaluation and hypoglycaemic
effect in streptozotocin-induced diabetic rats. Drug Development and
Industrial Pharmacy 2018, 44 , 109 – 115.

86.Zhang, L.; Qin, H.; Li, J.; Qiu, J.-N.; Huang, J.-M.; Li, M.-C.;
Guan, Y.-Q., Preparation and characterization of layer-by-layer
hypoglycemic nanoparticles with pH-sensitivity for oral insulin
delivery. Journal of Materials Chemistry B 2018, 6 , 7451 – 7461.

87.Zhang, Y.; Zhang, L.; Ban, Q.; Li, J.; Li, C.-H.; Guan, Y.-Q.,
Preparation and characterization of hydroxyapatite nanoparticles
carrying insulin and gallic acid for insulin oral delivery.
Nanomedicine: Nanotechnology, Biology, and Medicine 2018, 14 , 353 –
364.

88.Zheng, Y.; Wu, J.; Shan, W.; Wu, L.; Zhou, R.; Liu, M.; Cui, Y.;
Zhou, M.; Zhang, Z.; Huang, Y., Multifunctional Nanoparticles Enable
Efficient Oral Delivery of Biomacromolecules via Improving Payload
Stability and Regulating the Transcytosis Pathway. ACS Applied Materials
and Interfaces 2018.

89.Zhuravlyeva, N. N.; Krasnoshtanova, A. A. b., Development of the
chitosan-alginate microparticle based system for the delivery of
insulin. Russian Journal of Biopharmaceuticals 2018, 10 , 15 – 20.

90.Ziegler; Ohli; Hoefs; Aydin; Falk; Gross, Early detection and primary
prevention of type?1 diabetes: Global Platform for the Prevention of
Autoimmune Diabetes . Diabetologe 2018, 14 , 240 – 244.

91.CROSS-LINKED MALTODEXTRINS FOR THE ORAL DELIVERY OF BIOLOGICAL
ACTIVES. EP3427725, 2019.

92.Abramson, A.; Caffarel-Salvador, E.; Khang, M.; Dellal, D.;
Silverstein, D.; Gao, Y.; Frederiksen, M. R.; Vegge, A.; Hubálek, F.;
Water, J. J.; Friderichsen, A. V.; Fels, J.; Kirk, R. K.; Cleveland, C.;
Collins, J.; Tamang, S.; Hayward, A.; Landh, T.; Buckley, S. T.; Roxhed,
N.; Rahbek, U.; Langer, R.; Traverso, G., An ingestible self-orienting
system for oral delivery of macromolecules. Science Translational
Medicine 2019, 363 , 611-615.

93.Boushra, M.; Tous, S.; Fetih, G.; Xue, H.-Y.; Wong, H.-L.,
Development of bi-polymer lipid hybrid nanocarrier to improve the
entrapment and stability of insulin for efficient oral delivery. Journal
of Drug Delivery Science and Technology 2019, 49, 632 – 641.

94.Kuipers, A.; Moll, G. N.; Wagner, E.; Franklin, R., Efficacy of
lanthionine-stabilized angiotensin- in type I and type II diabetes mouse
models. Peptides 2019, 112, 78 – 84.

95.Liu, C.; Kou, Y.; Zhang, X.; Dong, W.; Cheng, H.; Mao, S., Enhanced
oral insulin delivery via surface hydrophilic modification of chitosan
copolymer based self-assembly polyelectrolyte nanocomplex. International
Journal of Pharmaceutics 2019, 554, 36 – 47.

96.Mart?nez, L. p.; Carvajal, M.; Sotelo, C.; Micard; Rasc?n, C.;
Franco, L. p.; Lizardi, M.; Canett, R., Enzymatically cross-linked
arabinoxylan microspheres as oral insulin delivery system. International
Journal of Biological Macromolecules 2019, 126, 952 – 959.

97.Sun, L.; Liu, Z.; Tian, H.; Le, Z.; Liu, L.; Leong, K. W.; Mao,
H.-Q.; Chen, Y., Scalable Manufacturing of Enteric Encapsulation Systems
for Site-Specific Oral Insulin Delivery. Biomacromolecules 2019, 20 ,
528 – 538.

98.Tan, S. Y.; Mei Wong, J. L.; Sim, Y. J.; Wong, S. S.; Mohamed
Elhassan, S. A.; Tan, S. H.; Ling Lim, G. P.; Rong Tay, N. W.; Annan, N.
C.; Bhattamisra, S. K.; Candasamy, M., Type 1 and 2 diabetes mellitus: A
review on current treatment approach and gene therapy as potential
intervention. Diabetes and Metabolic Syndrome: Clinical Research and
Reviews 2019, 13 , 364 – 372.

99.Tsai, L.-C.; Chen, C.-H.; Lin, C.-W.; Ho, Y.-C.; Mi, F.-L.,
Development of mutlifunctional nanoparticles self-assembled from
trimethyl chitosan and fucoidan for enhanced oral delivery of insulin.
International Journal of Biological Macromolecules 2019, 126, 141 – 150.

100.Vasconcelos Silva, E. d. L.; Oliveira, A. n. C. d. J.; Patriota, Y.
B. l. G.; Ribeiro, A. n. J.; Veiga, F.; Hallwass, F.; Silva-Filho, E.
C.; da Silva, D. A.; Soares, M. F. d. L. R.; Wanderley, A. G. a.;
Soares-Sobrinho, J. L., Solvent-free synthesis of acetylated cashew gum
for oral delivery system of insulin. Carbohydrate Polymers 2019, 207,
601 – 608.

Your Comments

近期评论

    功能


    网站地图xml地图